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Four one-dimensional plasma simulation models have been compared with regard ’ 
to the electrostatic two-stream instability. The primary reason for making these com- 
parisons was to determine the extent to which physical results depend on numerical 
method for a problem in which collective effects dominate. Previously, Lewis, Sykes, 
and Wesson compared these four simulation models using a stable double-streaming 
situation as a test problem. In that case the comparisons were with regard to collisional 
effects, energy conservation, and momentum conservation; however, because a stable 
test problem was used, only tentative conclusions could be drawn as to the comparison 
among the models when they are applied to a problem in which collective effects dominate. 
We have applied the models to compute the evolution of a two-stream instability and 
compared the time dependence of the electric energy as determined by each of the models. 
The models are characterized by the representation of the electric potential and by 
how the electric field is computed from the potential; both linear and quadratic splines 
are used to represent the potential or field. The major result of our comparisons is that 
the evolution of the electric energy of a two-stream unstable plasma does not depend 
strongly on the choice of model. There is a much stronger dependence on the random 
numbers that are chosen to represent the initial distribution function in phase space. 

1. I~R~DUCTI~N 

Particle plasma simulation has been applied to a wide variety of linear and non- 
linear problems in recent years. The basic electrostatic models used have been 
largely of the nearest-grid-point or particle-in-cell variety. In these models the 
self-consistent electric field derived from the electrostatic potential is either a 
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constant or linear function between mesh points. It is the purpose of this paper 
to determine the effect on plasma behavior of piecewise quadratic representations 
of the field and/or potential. 

The models used here were first compared by Lewis, Sykes and Wesson [l]. In 
a one-dimensional plasma simulation of a Maxwellian distribution of positrons 
streaming stably through a Maxwellian distribution of electrons, these authors 
found that the models were very similar with regard to collisional effects. It was 
suggested, however, that this surprising negative result might not apply to problems 
in which collective effects dominate. We study such a problem here, namely, the 
instability of two equal oppositeIy streaming warm electron beams. This instability 
provides us with a well-documented test case. Rosenbluth [2] has analyzed the 
linear regime; and the simulations of Roberts and Berk [3], Morse and Nielson [4], 
and Chu, Gula, and Mason [5] demonstrate the qualitative aspects of the nonlinear 
evolution of this instability. 

In this paper we first briefly discuss the four numerical simulation models which 
we used in our study of the electron two-stream instability. Test runs are then 
summarized for the four models using three different randomly chosen sets of 
initial conditions. Diagnostic measurements of momentum and energy con- 
servation, and electric field energy versus time are presented. Our results confirm 
conclusions reached by Lewis, Sykes, and Wesson [l]; no significant differences 
between the four models are observed. 

2. THE MODELS AND TEST F~OBLEM 

The four models used are designated by M/N, where M and N are the degrees of 
the piecewise polynomials used to represent the potential and electric field, respec- 
tively. M or N may be 0 (piecewise constant), 1 (continuous piecewise linear), or 2 
(smooth piecewise quadratic). With this nomenclature, the four models investigated 
were l/O, l/l, 2/l, and 2/2. For example, the 2/l model has a smooth piecewise 
quadratic potential with a continuous piecewise linear field. The l/l model 
corresponds to the standard PIC scheme [6]. 

For our test runs a fixed, positive, neutralizing background was employed. 
Periodic boundary conditions were used, and particles were advanced by the 
standard time-centered leapfrog scheme. For completeness, we describe the models 
briefly here; they are described in detail in Ref. 1. The potential 4(x, t) is defined 
with respect to a spatial grid consisting of N cells of equal length in a period,and 
the potential is required to vanish at the endpoints of the grid. The representation of 
KG t> is 

(1) 
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where the functions g*(x) are dimensionless local basis functions for first- or 
second-degree splines that vanish at the endpoints. The coefficients a,(t) have the 
dimension of potential. 

Poisson’s equation is represented as 

c Tnm~, = -P&O 3 
m 

(2) 

where the T matrix is a variational representation of da/dx2, pn represents the 
charge density assigned to the nth grid point, and l 0 is the permittivity of free space. 
T,, and p,, are defined by 

T,, = -1’” g,‘(x) gm’(x> dx, (3) 
% 

where x,, and xN are the positions of the left and right endpoints, and 

in = ; Qicah), (4) 

where Qi and yt are the charge and position of the ith particle. The electric field 
E(x, t) for the models is 

or 

Jw, 0 = 5 4) ha(x) 
n-1 

(l/O and 2/l models) (5) 

(l/l and 2/2 models); (6) 

the coefficients on and LY, are related by 

2 GMYK) = -z wsa’(yd (k = 1, T-9 N). (7) 
n=l 

The functions h,(x) and g,(x) are identical except near the endpoints; the functions 
h,(x) are local basis functions for periodic first- or second-degree splines. The 
positions yK coincide with grid points for the l/l model and are midway between 
grid points for model 212. 

The electric field energy U for these models is -(~,,/2) Ci,j a<Tijaj , where U in 
the continuum case is defined by 

u= -$J$(x,t)dadx. 03) 
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For the test runs whose results are presented in the next section, the initial 
loading consisted of two counterstreaming warm electron beams, each beam 
containing 4992 = 78 x 64 particles. The initial velocities in each beam were 
chosen randomly from a Maxwellian distribution. The thermal speeds of the two 
Maxwellian distributions were equal, and the mean velocities were f3 times the 
thermal speed of either beam. Initially, the particles were spaced equally along the 
coordinate axis, the particles of one beam alternating with those of the other beam. 
The total number of cells, N, was 64, and the initial spacing between adjacent 
particles was [64/(2 x 4992)] times the cell length. Each endpoint of the grid was 
half that distance from the nearest particle. The cell length was one Debye length, 
where the Debye length corresponds to the initial thermal speed of either beam. 
The time step used for advancing the particles with the standard leapfrog scheme 
was 0.04 TV, where TV is the plasma period corresponding to the total average 
particle density. The computations for the results presented were performed using 
a CDC 7600 computer. 

3. SIMULATION RESULTS 

In Fig. 1 results on the evolution of the electric field energy are summarized for 
the four models up to time 167, . The three columns in the figure correspond to 
three distinct random number sets used for the velocity initialization. The field 
energy plots display the usual linear growth, saturation, and subsequent oscillation 
as found by previous investigators [3-51. Pronounced differences are seen in these 
curves for a given M/N model from one random number set to an0ther.l For any 
particular velocity initialization, all four models show strikingly similar behavior up 
to about time 8~~. For longer times, the general behavior (i.e., oscillations) is 
similar with only small detailed differences being evident. 

The fluctuation in total energy, dE, and the fluctuation in momentum, dP, were 
calculated for the time period 167, ; they are presented in Table I for each case. 
AE and 0’ are defined as follows: 

where N,, is the total number of particles, m is the electron mass, 0th is the initial 

1 It is worthwhile to note that care was taken in assuring that the respective random number 
sets used were completely different. These correspond to the first, second, and third group of 
12 x N0 random numbers generated by the CDC Library subroutine RANF. 
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FIG. 1. Electric field energy versus time in units of the plasma period rD for models l/O, l/l, 
2/l, and 2/2. The three columns of subfigures correspond to the three different velocity initializa- 
tions that were used. 

TABLE I 

Energy and Momentum Fluctuations for all Four Models and 
the Three Velocity Initializations 

Model 110 l/l 211 212 

1st set of random numbers AE = 1.5 x 1O-5 8.5 x 10-4 1.2 x 10-a 6.7 x 1O-4 
AP = 3.9 x 10-a 7.2 x lo-l2 1.0 x 10-a 3.1 x 10-l’ 

2nd set AE = 1.9 x 1O-3 8.0 x 1O-4 1.0 x 10-s 5.7 x 10-a 
AP = 3.3 x 1O-s 2.7 x 10-l’ 9.1 x 10-d 7.5 x 10-12 

3rd set AE = 1.2 x 1O-3 7.9 x 10-t 1.2 x 10-S 9.6 x 1O-4 
AP = 3.0 x 10-a 4.4 x 10-u 9.4 x 10-d 4.8 x lo-” 
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thermal speed of either beam, and Emax , Pmax , (I&n, , J&r,) are the maximum 
(minimum) total energy and momentum of the system over the total time 167, . 
Energy is conserved to at least 0.2% for all models. Momentum is conserved to 
at least 0.4% for the l/O and 2/l models, while the l/l and 2/2 models conserve 
momentum to machine roundoff. 

4. CONCLUSIONS 

We have studied the development of the two-stream instability using four 
numerical simulation models. For a given set of initial velocities, the histories of 
electric field energy agree well with one another for all four models up to time 8~~ . 
While differences in the field energy graphs are evident for later times, the overall 
impression is that all models behaved in essentially the same way. A strong 
dependence on initialization was displayed by all models. Total energy and 
momentum were conserved well for each model and run; the 2/2 and l/l models 
exhibited momentum conservation to machine roundoff. 

On the basis of our results with this problem, there appears to be little difference 
between the four models in their applicability to problems in which very active 
collective motions of the plasma are present. The additional smoothing provided 
by the 2/l and 2/2 models had little effect. Because the models that use a piecewise 
linear potential are mathematically simpler and computationally more economical, 
we conclude that those models are generally preferable for one-dimensional 
electrostatic plasma simulations. 

Although the results of our attempt to find an improved simulation method for 
one-dimensional collisionless plasmas are pessimistic, it should be borne in mind 
that simulation is useful for determining some gross features of the evolution of 
plasmas. Conclusions similar to those reported here for one-dimensional simulation 
have been made recently for two-dimensional simulation on the basis of a com- 
parison of three two-dimensional simulation models [7]. 
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